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A nonlinear model for the dynamics of avalanches in granular systems is presented. It is based on
mean-field equations for the particle velocity and the angle of the surface of the granular system. The
friction force is discontinuous at zero velocity and increases monotonically with the square of the veloci-
ty. The model explains the main features of the dynamics of avalanches in analytical detail. It also ex-
plains the logarithmic decay behavior of the angle of the pile in the presence of vibrations as found ex-
perimentally by Jaeger et al. [Phys. Rev. Lett. 62, 40 (1990)].

PACS number(s): 46.10.+z, 81.35.+k

INTRODUCTION

Granular systems (e.g., sand or dry coffee powder) are
large assemblies of grains which interact only by repul-
sive forces due to collisions and friction. Recent experi-
ments have shown that this state of matter shows many
surprising and not yet understood features [1-5] such as
dilatancy, bistability, size segregation, convective trans-
port, and pattern formation. In particular, granular sys-
tems exhibit solid-like properties when they deform plast-
ically under weak shear, but also fluidlike properties since
they can flow in a non-Newtonian manner under high
shear [1]. The understanding of this behavior is not only
of fundamental interest in physics; it also has widespread
applications for chemical engineering and geophysics [1].

The reason why granular systems can start to flow and
stop again is an elementary and fundamental problem.
Recently, several experimental [2—6], numerical [7], as
well as theoretical approaches [6,8,9] have been reported.
The typical experimental setup is a pile of grains (e.g.,
glass spheres) in a horizontal cylinder or drum, which
can also be rotated about its axis with a constant angular
velocity. The slope of the pile is characterized by the an-
gle @ measured with respect to the horizontal. Some im-
portant experimental findings [2,6] are the following. (i)
Without rotation, there is a maximum angle of repose @,
below which the pile is at rest. For larger angles, an
avalanche flows until the pile comes to rest again at a
minimum angle of repose ¢, <@,. (ii) With external rota-
tion, two types of dynamics are possible: periodic slip-
stick behavior (alteration between avalanches and rest
states) for small rotation rates and constant flow above a
threshold rotation rate wy. (iii) A logarithmic decay
behavior of the angle in time occurs if the pile is driven
by external vertical vibrations. In all these experiments
the dynamics of the pile is mainly concentrated in a thin
layer of grains at the surface. The model that we present,
explains in analytical detail all three features in a unified
way on the basis of a nonlinear oscillator model. It shows
that many properties of avalanches can be understood in
a “‘deterministic” way without knowing the ‘“mesoscop-
ic” details of the system.
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BASICS

Phenomenologically, one can describe the dynamics of
avalanches by a system of coupled dynamical equations
[6,8,9] for the velocity of a grain at the surface of the
avalanche in the mean field of the others v (#) and slope of
the surface of the pile ¢(z). Here v and ¢ are quantities
averaged over an ensemble of experiments. The static
behavior of the pile can be modeled as follows: If v =0
and ¢ <¢,, the rest state is stable [6]. The dynamic
behavior can be described in analogy to Coulomb’s
theory of friction of a body on an inclined plane. The
force balance requires that the acceleration of a grain is
determined by the sum of the tangential component of
the gravity force, proportional to sing, and the friction
force, proportional to k,(v)cosg as proposed by Jaeger
et al. [8]. In this one-dimensional picture, the dynamical
friction coefficient k;(v) accounts for all the friction and
collision effects that the grain undergoes, and depends on
the velocity.

For large v, it is well known [1,6,8] that Bagnold’s law
[10] holds, i.e., k,(v) increases proportional to v2. In the
previous literature, two proposals have been put forth for
the velocity dependence of k;(v) for small v: (i) Jaeger
et al. [8] suggest that k,(v)=a,/(1—a,v?)+a;v? with
a;>0,a;>0, and a,a,+a;<0; (ii) Caponeri et al. [6]
use k;(v)=cy—c v +c,v? with v >0 and ¢; >0 (i=0,1,2).
In both cases, the authors assume that k;(v) exhibits a
minimum for small, nonzero velocities (implying a region
of negative differential friction) and increases for larger
velocities according to Bagnold’s law. In contrast, we
suppose a monotonically increasing dynamical friction
coefficient k,(v) is, with by >0 and b, > 0, of the form

ky(v)=by+b,v? if v>0. (1)

The static limit of the dynamic friction coefficient
k4(v—0) corresponds to an angle @, =arctan(b,) [11].
This angle is smaller than the maximum angle of repose
@, so that there is a discontinuity at zero velocities [6].
In the following, we will demonstrate that (i) the choice
of a dynamic friction coefficient k;(v), which increases
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monotonically with v2, and (ii) the discontinuous behavior
when switching from static to dynamic, are sufficient to
explain the characteristic stick-slip and constant flow
behavior of avalanches [2,6]. It can also explain the In(¢)
relaxation of @ in the presence of vibrations [2].

In an avalanche, the dynamics of ¢ is coupled to the
velocity by ¢=f (@,v). Without flow (v=0), no changes
of the angle are possible. Thus one obtains, in the
lowest-order approximation, ¢ = —av, with a coupling
parameter a>0 as proposed by Caponeri et al. [6] and
Benza, Nori, and Pla [9]. Of course, a can also depend on
@ [9]. This, however, is not a leading-order effect in the
following discussion, except for the influence of vibra-
tions discussed at the end of this paper.

MODEL EQUATIONS

For the sake of simplicity, we restrict the discussion to
positive angles ¢. The combination of the static and dy-
namic force balance and the friction law (1), as well as in-
corporation of additional external rotation, leads to

v =g [sing—(by+b,v2)cosplx(@,v) , (2a)
p=—av+o, (2b)
with the cutoff function being x(@,v)=6(v)

+O0(p—@,)—O(v)O(p—@,). Here © denotes the step
function [O(y)=0 (1) if y <0 (y >0)]. The cutoff func-
tion Y guarantees that the system stays at rest as long as
v=0 and @=¢, and it is trapped at the state of rest,
when v goes to zero and ¢ <¢,. @ denotes the positive-
valued constant external rotation rate. Equations (2a)
and (2b) apply only to grains at the surface of the pile.
Grains in the bulk underlie additional constraints due to
the grains on top of them. Therefore, the thickness of the
surface boundary layer of grains moving with the
avalanche cannot be described within our approach. For
a satisfactory description of the boundary layer effects
one has to consider field theoretical approaches, which
are beyond the scope of our present objective.

All dynamics of avalanches are basically centered
around the angle @,. Introducing the deviation from this
angle, ie., P(t)=g¢(t)—¢@,, scaling time as t—1/Vga
and the velocity as v —vV'g/a and setting 0=%/V ga,
one can transform (2) to an equivalent second-order equa-
tion in P:

& —[8(cos® —p sin® ) (P —w)?>— QZsin® |y (P, P)=0,

(3)
where X(@,2)=6(—d+0)+6(>—d,)—O(—P
+0)o(P—d;), P =@, —¢,;, 6=(gb,/a)cosp;>0,
u=tang,, and Qf=(1+tan’p,)cosp, >0. Given the dy-
namics of ®, the velocity reads v =w—®. Note that Q%
depends only on @, and is of order unity for not too large
angles ¢ . The parameter §, however, is proportional to
the ratio b, /a of the curvature of the friction coefficient
and the relaxation rate of the angle.

NUMERICAL RESULTS

To demonstrate that our model shows the basic
features of avalanches, we integrate (3) numerically. Fig-
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ure 1 shows trajectories in the (w—®,®) phase space for
three different values of w. Relevant initial conditions are
v(0)=0 and ®(0) infinitesimally above the maximum an-
gle of repose ®,. For «=0 [Fig. 1(a)], the angle ®(#) de-
creases monotonically. The velocity v (¢) increases first,
since the velocity-dependent part of the friction is still
small. Then the Bagnold friction becomes dominant and
slows down the motion until the minimum angle of re-
pose ®,, with v=0, is reached. For w70, e.g., ®=0.05
[Fig. 1(b)], the behavior is different. Due to external rota-
tion, ®(¢) and v (¢) increase first, until the Bagnold fric-
tion slows down the motion to end up at v=0 and ®,.
Before reaching v=0, the angle ® increases again. The
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FIG. 1. Trajectories of Eq. (3) in the phase-space spanned by
v and P for three different external rotation rates (a) ®=0, (b)
©=0.05, and (¢c) ®=0.5. The parameters ¢, and b, that we
have chosen are extrapolations of the experiment of Ref. [2]:
@, =0.48 (corresponding to a maximum angle of repose of 27.8°)
and b,=0.503 (corresponding to ¢,=26.7°). This implies that
03~1. Since a and b, are not known, we have chosen a
representative value §=0.1.
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system is still insensitive enough to end up in the rest
state. It stays at rest until it reaches ®, again. Then the
next avalanche starts. Above a threshold value
o1=0.053. .. (given by the condition that the trajectory
ends in ®,=0), the dynamics changes topologically. For
®©=0.5 [Fig. 1(c)], the system approaches the fixed point
®,, =arctan[8w?/(Q3—udw?)] in form of a spiral. The
dynamical behavior of (3) agrees well with the experi-
ments in Refs. [2,6]. Qualitatively similar behavior has
also been observed numerically in the model [6] with non-
monotonic friction laws.

A MINIMAL MODEL

To gain more insight into the physics of avalanches
and to extract in analytical form the features of (3), we
simplify the model as follows. With |®(¢)| being small,
as it is in the relevant situation in the experiments [2,6],
we can approximate sin® by @ and the term in front of
(& —w)? by unity to obtain the approximation

O —[8(d—w?)— Q3P x(®,d)=0 . 4)

If =0 and v>0 [i.e., X((I),<i>)=l], (4) reduces to an un-
damped harmonic oscillator. For nonzero 8 and v> 0, it
is a harmonic oscillator with nonlinear friction coefficient
—8(20—®) and a constant external driving 8w?. Equa-
tion (4) constitutes our minimal model for the dynamics of
avalanches. It is the lowest-order, nontrivial reduction of
(3); for not too large w, it leads to predictions that agree
within line thickness with the dynamics of (3).
Throughout the following, we discuss analytically its
main features.

NO ROTATION

If =0 and v>0, the model (4) reduces with Q?>0
and 8 > 0 to a harmonic oscillator with a negative quadra-
tic friction, i.e.,

& —8D*+ Q2P =0 where & <0 . (5)

The relevant initial conditions are ®(0)=®, and ®(0)=0.
For the moment, we discuss (5) without the constraint
®<0. Its only fixed point ®=d=H=0 is elliptic.
Therefore, the system in (5) possesses a periodic solution
with a constant of motion reading explicitly

J=[19*—(Q2/48%)(1+28®)]exp(—28®) . (6)

For small 8, the periodic solution can be obtained asymp-
totically by the use of a Poincaré-Lindstedt expansion
[12]. The result is

®(1)=D cos(Qt)+8P4(2)+0(8?) , (7a)
Ds(1)=1D2[1—4cos(Qs)+ Llcos(2Q1)] , (7b)
Q=0Q,[1—-8’®2/6+0(5%)] . (7c)
Note that the period T =27/Q=2m/Q,)[1

+82®2/6+ 0(8*)] increases quadratically with increas-
ing &.

For avalanches in granular media one also has to take
into account the constraint ® <0 in (5), or equivalently
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the cutoff function y. This implies the following. (i) Only
the first half oscillation of the periodic solution is impor-
tant. Once started at an angle ®,, the avalanche slips un-
til the velocity reaches v = —®=0 at an angle ®, and
sticks there forever. (ii) The duration time of an
avalanche is T, =T /2. (iii) The maximum angle of re-
pose @, determines the minimum angle of repose
D, =—D(1—45®P,)+0(8%. (iv) Minimum and max-
imum angles are ®, and ®,; while slipping, no angle out-
side this range can be reached. (v) The maximum veloci-
ty of the avalanche v_,, is determined by the condition
¢2=(Q(2)/8)<D. Using the small-8 result, one obtains
Vmax =P Qo[ 1 — 2@ 8+0(8%)] at  time  t(vp,,)
=(7/2Qy)[1—(4/37)®,6+0(8*)] and at an angle
DV ) =P28+0(8?). It occurs at an angle slightly
above ¢@,;=(@p,—@,)/2+0(8). (vi) Since v,,, and
®(v,,,) are experimentally measurable, one can fit the
experimental data by the parameters & and Q3 of the
model. They are related by 8§=®(v,,,)/®> and
Qo= (V0 /D) 1+(2/3)D,6+ 0 (8%)].

FINITE ROTATION RATE
The minimal model with ®0 and y(®,®)=1 reads
O—8(®—w)?+Qid=0 with d—w<0 . (8)

Dropping momentarily the constraint ®—w <0 in (8),
the dynamics is invariant under simultaneous reversal of
time t— —t and rotation rate w— —w. Its only fixed
point is given by ®,=8(w/Qy)%. A linear stability
analysis of the fixed point leads to eigenvalues
A,=—80[1£V'1—1/®,]. Therefore, @, is linearly
stable for all 6 >0. Its topology is a stable focus if &, <1
and a stable node if &, >1. We conclude first that the
periodic solution for ®=0 develops into a transient oscil-
latory approach to the fixed point ®,, provided &, <1.
Second, the model is dissipative for nonzero &, i.e., it no
longer possesses a constant of motion. To obtain infor-
mation on the transient approach of the fixed point for
small 8, we apply the method of averaging [12]. With the
relevant initial conditions ®(0)=<®,; and ®(0)=w, one
obtains

()=, + (P, — D, )cos ()
Xexp(—8wt)cos(Qyt +a) , (9a)
o(Q3+ D, Q28— ?8?)

a= —arctan . (9b)
Qy( P, 03— w?8)

Now taking into account the constraint ®—w<0, the
implications for avalanches in granular systems are the
following. (i) For given 4 and 8 >0 and initial angle P,
there are a time 7; and a rotation rate w; such that
simultaneously ®(t;)=0=®(z;) and ®(t;)=w; are
fulfilled. At that rotation rate wr, the transition between
stick-slip and constant-flow behavior happens. Using (9),
one can show that wy is approximately given by the solu-
tion of the transcendental equation
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w )
—Tcos arctan T +——T¢S
0 QP Q,
2
@
= d>s-8—~T2—]
Q5
or |3 or
Xexp { —8—— | —wm+arctan .
Qp |2 QuP, ] ]

For the numerical values discussed above (cf. Fig. 1), we
obtain wr==0.054, which compares very well with the
threshold value w;=0.053... of (3). (ii) For w>wr,
v(t)=w—®(1) is strictly positive for all times and the
avalanche approaches the constant flow solution ® os-
cillatorily according to (9). The product 8w corresponds
to an inverse relaxation time and measures how quickly
the avalanche reaches the constant flow solution ®,. (iii)
For w < w7, the solution (9) will reach v=0 after a finite
time ¢,, given by the condition v (t,)=w—®(t,)=0, at a
minimum angle of repose ®,=®(z,). From (9) one ob-
tains

Qot, =(m+p)[1+(B10/Q()8] ,
D, =—D,+(B,/Q)Nw /B p+m)8 ,

(10a)
(10b)

with p=arctanf, +arcsinf3,, B1=w/Qy®,, and B,=w/
Vv @*+®2Q2. Having reached ®,, the cutoff function in
(4) forces the system to stay at rest until the maximum
angle of repose @, is reached again. The duration time in
the rest state is given by At =(1/w)(®;—P,). The com-
bination of the avalanche dynamics (the slip part) (9) and
(10) and the motionless state (the stick part) determines
one period of the slip-stick behavior of the system. This
process will go on forever with a period T =t, +Atz. (iv)
Above o7, the stick part of the dynamics no longer ex-
ists. For small 8 and Q, of order unity, o is also small.
Therefore, the relaxation time to the constant flow solu-
tion is very long (proportional to 1/8w), implying that
just above w; the dynamics consists of long-lived tran-
sient periodic oscillations in ®(¢) and v (#). They might
be related to the “periodic” avalanches found in the ex-
periment of Caponeri et al. [6]. (v) While slipping, the
angle ®(¢) can also reach values higher than &, and
lower than —®,. This is caused by external rotation. In
the lowest-order approximation, one finds that the max-
imum (minimum) angle ®, (®_) is given by
O, =+ [1+(0/Qy®,)*]'2+0(8).

VERTICAL VIBRATIONS

Our model also offers a simple, qualitative explanation
for the logarithmic decay law of the angle @ in the pres-
ence of additional vertical vibrations [2]. Vertical vibra-
tions dilate the granular system, particularly the surface
layer. This can be incorporated in the model in an in-
direct way: The static limit of the dynamic friction
coefficient in the presence of large variations becomes
strongly diminished, i.e., by—bg <<1 [13,14]. In addi-
tion, vibration drives the grains off the rest state even at

angles @, somewhat lower than @ [2]. This can be in-
corporated by a nonzero initial velocity of the grains,
v (0)=k, which is characteristic for a given experimental
setup with fixed vibration amplitude and frequency. Let
us now show that these general features can indeed lead
to a topological change in the dynamics of (4). Benza,
Nori, and Pla [9] have shown that the coupling coefficient
a is proportional to tang in finite cylinders. This implies
that @ =@ tang,, with @ being independent of ¢, in the
lowest-order approximation. To understand the effect of
vibration, it proves useful to scale (2) with @ instead of a.
The structure of (4) is preserved and the coefficients are
altered: With ¢j=arctan(by) one obtains &—06
=§/tangy, =gb,cos’py /& sing} and Q03— 3=02tangy
=singY(1+tan’py). From that, one can see that ¢} <<1
corresponds to ﬁ%<<1 and 8 large. In the limit {}3—0,
(3) reads ® —8(®d—w)?>=0, and can be solved analytically
using initial conditions ®(0)=®  and ®(0)=—«k+ow.
The result reads

O(1)=d; +ot —(1/8)In(1+8kt) . (11)

The time evolution consists of two competing effects: a
linear increase in time due to external rotation and a log-
arithmic decay due to friction. Let us discuss in particu-
lar the case ®=0. Then, one obtains precisely the loga-
rithmic decay of ® as verified experimentally by Jaeger,
Liu, and Nagel [2]. This fact is an indication of the valid-
ity of the friction law we propose because we find this
characteristic logarithmic decay for other friction laws
[6,8,9] only if we use a very small nonmonotonicity. In
general, Q, will not be exactly zero, but very close to
zero. Then (11) is the leading-order solution in a pertur-
bation expansion for small Q3, which is valid on short-
and intermediate-time scales. Higher-order terms in the
perturbation expansion lead to corrections to the In(?)
behavior. In the long-time limit, ®(¢) will saturate at a
value close to zero [13].

CONCLUSIONS

Although the minimal model (4) is comparable simple,
many basic features of the transition to flow in granular
systems can be explained qualitatively. We emphasize
the following. (i) A dynamic friction coefficient k;(v),
which increases monotonically with v?, is sufficient to un-
derstand surface flow of granular piles, particularly the
periodic slip-stick flow, the almost periodic avalanches
close to w, and the constant flow behavior found in the
rotating-cylinder experiments of Caponeri et al. [6]. (ii)
In the presence of vertical vibrations, the assumption that
k4(v—0) is strongly diminished can explain the fact that
the angle of the pile decays, for not too long times, loga-
rithmically in time [2]. Hence our deterministic ap-
proach is inherently able to describe the relaxation law of
the surface angle of the pile without the need to invoke
additional statistical concepts as done previously in Refs.
[2,15]. We hope that our study will stimulate more ex-
perimental work aimed at investigating in greater detail
the friction law that governs the dynamics in granular
systems.
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